
Introduction

The carbon market has become a major mechanism 
for global carbon emission control [1, 2]. The theoretical 
basis of the carbon market is the externalities of 
environmental pollution and the Coase Theorem. In 
theory, if the definition of emission right is clear and 
transaction costs are close to zero, carbon market can 
achieve optimal resource allocation and reach emission 
reduction targets with minimum social costs [3, 4]. 

However, due to the lack of elasticity of the carbon 
allowance supply curve, and the fact that allowance 
demand for regulated companies is greatly affected 
by the external environment, the drastic fluctuation 
of carbon prices, especially the extreme carbon prices 
occur frequently, which is not conducive to capital 
investment in structural emissions reduction [5, 6]. 
Therefore, if carbon market regulators want to achieve 
reduction targets at a lower social cost, it is necessary 
to conduct sensitivity analysis of key factors in the 
emission market.

Whether the carbon market model accurately reflects 
the impact of parameter changes on the actual carbon 
market directly leads to the reliability and effectiveness 

Pol. J. Environ. Stud. Vol. 30, No. 4 (2021), 3645-3658

              Original Research              

Sensitivity Analysis of Key Factors Influencing 
Carbon Prices under the EU ETS

 
 

Chao Jiang*, Yunliang Yue 

School of Information Engineering, Yangzhou University, Yangzhou 225127, China

Received: 31 December 2019
Accepted: 1 December 2020

Abstract

The carbon market has become a major mechanism for global carbon emission reduction. However, 
the actual operation of the carbon market does not meet the expectation due to the drastic fluctuation 
of carbon prices. It is of great importance for regulators to fully understand the dynamic operation 
of the carbon market. This paper employs the carbon market dynamic assessment model to analyze 
key factors including emission reduction targets and power loads, which influence carbon prices under 
the European Union Emissions Trading System (EU ETS). The feasibility of the model is verified by 
simulating the carbon price crisis of the second stage of EU ETS. The simulation results specify that the 
total emissions are more susceptible to changes of power loads than emission reduction targets, which 
explains why the European Commission could do little to stabilize the carbon market when facing the 
disturbances of the global financial crisis and the European crisis. In addition, the threshold carbon 
price has a great important influence on emission reductions, which is of great importance for regulators 
to improve the market efficiency. Furthermore, according to the transfer rate from carbon prices to 
electricity prices, governmental subsidies could be needed to ensure the stability of the power grid.

Keywords: emission trading, generation company, carbon market dynamic assessment model, sensitivity 
analysis

*e-mail: jiangchao@yzu.edu.cn

DOI: 10.15244/pjoes/131083 ONLINE PUBLICATION DATE: 2021-05-05 



Jiang C., Yue Y.3646

of the final sensitivity analysis results. Therefore, the 
construction of the carbon market model is the key to 
the sensitivity analysis of the carbon market [7]. There 
has been considerable research about the existing 
Emissions Trading System (ETS). The research methods 
of the carbon market dynamic assessment model mainly 
include econometric models, computable general 
equilibrium models (CGE), experimental economic 
methods, and multi-agent models. Econometric models 
and CGE can reflect the impact of macro variables on 
the carbon market, but it is difficult to dynamically 
simulate the carbon market risk, usually applied to 
empirical analysis and long-term planning [8, 9]. 
Experimental economics can accurately simulate the 
dynamic trajectory of the actual carbon market, but 
due to the difficulty of occupying a large number of 
participants for a long time, there are limitations in 
the scale of repeatability of the experiment [10, 11]. 
The multi-agent model is a viable solution to analyze 
the impact of disturbances or control measures at the 
micro level, as well as assess the operation performance 
of the carbon market at the macro level [12, 13]. 
However, uncertainties in the actual market make 
participants’ decision-making more complicated, while 
multi-agent model mainly adopts regular transactions 
and determines the transaction volume based on the 
emission imbalance [14, 15], which is difficult to 
reflect the decision-making preferences of participants, 
affecting the accuracy of the sensitivity analysis as 
a result. Therefore, the behavioral characteristics of 
participants need to be further considered in the multi-
agent model.

Carbon emission trading is confirmed to be an 
effective environment policy to realize emission 
reduction [16]. In developing countries, such as China, 
with the implementation of ETS, in order to consider 
the economic growth or PM2.5 emissions, improving 
energy efficiency is one of the most important measures 
to reduce carbon emissions [17, 18]. The European 
Union Emissions Trading System (EU ETS) is the 
world’s largest and most influential carbon market 
[19]. However, under the influence of many internal 
and external factors, the carbon market price of the 
second stage (2008-2012) of EU ETS showed a violent 
oscillation [20, 21]. The sensitivity analysis of key 
factors in EU ETS has implications for regulators  
to design and improve the carbon market mechanism. 
According to the rules of EU ETS, this paper  
constructs a carbon market model, including production 
simulation of controlled enterprises, carbon trading 
behavior agents, and carbon market price models. 
Furthermore, taking the carbon price crisis of the 
second stage of EU ETS as the research object, 
combined with specific data, this paper simulates the 
trend of carbon price to verify the feasibility of the 
carbon market dynamic assessment model. Finally, 
the sensitivity analysis of key factors in EU ETS is 
conducted and discussed to support the decision-making 
of the regulatory agencies.

Materials and Methods

Model Formulation

EU ETS covers the power, heat, chemical, cement 
and other industries. As the electricity industry is the 
hub of energy production and consumption, emission 
management is not only related to its own sustainable 
development, but also affects whether the emission 
reduction target can be successfully achieved [22]. 
According to the carbon emission level, about 68% 
of carbon emissions come from the energy industry 
(electricity and heat) based on the 2015 EU ETS carbon 
emission statistics [23]. With regard to the allowance 
allocation, nearly 50% of the allowances in the second 
phase of EU ETS is allocated to the power industry [24]. 
As to the enthusiasm of market participants, the power 
industry is more motivated to participate in the carbon 
market [25]. In view of the representativeness of the 
power industry in the carbon market and the availability 
of its data, this paper attempts to take the European 
power generation industry as the representative, 
to simulate the evolution of supply and demand in 
the carbon market, considering the impact of major 
disturbances on the supply and demand of electricity.

The framework of the carbon market dynamic 
assessment model includes the allowance allocation 
model, the carbon price model, the generation and 
emission model, and the trading behavior model (as 
shown in Fig. 1). Firstly, the initial allowances are 
allocated to generation companies (GenCos) according 
to the allowance allocation model. And then through the 
generation and emission model, the amount of power 
generation and emissions are determined. Based on 
the emission balance calculated and the current carbon 
price, the trading volumes are determined by the trading 
behavior model, and finally the carbon price model 
simulates the impact of trading behaviors on carbon 
prices. According to this process, the dynamic trend of 
carbon market operation under the entire compliance 
period is simulated.

Fig. 1. The framework of the carbon market dynamic assessment 
model.
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Allowance Allocation Model

According to the allocation rules of the initial 
allowance allocation in the second phase of the EU 
ETS, the initial allowance allocation of the generators 
adopts the grandfathering method based on historical 
emissions [26], as shown in equation (1).

a h c a
i i i iq q λ λ= × ×                         (1)

Among them, qi
a is the initial allowance that is 

freely obtained for generation company (GenCo) i, qi
h 

is the historical emission level of the GenCo i, λi
c is the 

control coefficient set for supervision, and λi
a is the ratio 

of free allocation.
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                     (2)

In this paper, it is assumed that the GenCos are the 
only participants in the market, so the total amount 
of allowances in circulation is the sum of the initial 
allocation for each GenCos, as shown in equation (2), 
where N g is the number of GenCos.

Price Model

This paper uses the demand-price model we’ve 
proposed to simulate the impact of carbon market 
supply and demand on prices [27]. The carbon price 
of a certain day is determined by the carbon price of 
the previous day, the short-term supply and demand of 
allowances, and the long-term supply and demand of 
allowances, as shown in equation (3).
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Among them, pt
e is the carbon price of the day t, 

q bi,t–1 (q si,t–1) is the allowance purchase amount (or sales 
amount) of the participant in the day t, coefficient α and 
β are the impact of short-term and long-term supply and 
demand on the price respectively, T is the compliance 
timing, and Et is the total emissions of all GenCos in 
the day t.

In order to better simulate the impact of supply and 
demand on carbon prices, this paper uses the actual 

price curve of EU ETS to carry out the simulation, and 
then obtains the transaction results of each participant’s 
behavioral model in this price scenario (purchase and 
sale amount in each period), and finally gets the value 
of α and β in the price model (as shown in Table 1).

Generation and Emission Model

The economic dispatch model was used to simulate 
the power generation. Assuming that power units are 
quoted based on the marginal power generation cost cj,t, 
which is combined with the marginal fuel cost c fj,t and 
marginal emission cost c ej,t [28], as shown in equation 
(4). 

, , , ,
f e f f e e

j t j t j t j t j t jc c c p pλ λ= + = × + ×            (4)

Among them, p fj,t is the price of fossil fuel used 
for the power unit j in the day t, λj

f is the energy 
consumption rate of the power unit j, and λj

e is the 
emission rate of the power unit j.

The unified price clearing mechanism is adopted, 
and the load is distributed according to the unit price 
quoted from low to high. The marginal electricity 
price is the last bidding price of the unit that meets the 
balance between supply and demand. The emissions of 
each GenCos can be calculated based on the clearing 
electric quantity and emission rates of each power units, 
as shown in equation (5). 
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Among them, ei,t is the amount of emissions of 
GenCo i in the day t, Ni

u is the number of power units 
owned by the GenCo, and qj,t is the amount of electricity 
generated by the power unit j in the day t.

Trading Behavior Model

The carbon trading behavior model is constructed 
based on the hybrid simulation method proposed in our 
previous work [29]. Based on the actual participants’ 
transaction results, the statistical rules of key driving 
factors and trading behaviors are extracted. The 
behavioral driving factors considered include the long-
term price trend, the short-term price volatility, and 
compliance urgency (as shown in equation (6)), and 
a behavioral agent model is established based on the 
joint distribution of transaction behaviors on these 
characteristic variables.

Table 1. Values of α and β in different years. 

2008 2009 2010 2011 2012

α 0.1649 0.1438 0.1229 0.1128 0.1206

β 3.8572 1.1537 0.5975 2.5106 1.1351
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Among them, rt
f reflects the long-term price trend, 

rt
p reflects short-term price trend, rt

u comprehensively 
reflects projected emission imbalance and the distance 

between the present timing and the compliance timing,  
p–    t

e is the recent (this takes the last seven days) of carbon 
prices. 

The decision process of the behavioral agent is 
shown in Fig. 2. During the dynamic simulation process, 
the behavioral agent collects market information, and 
calculates the value of the characteristic variable rt

f, 
rt

p and rt
u. Random sampling is conducted based on 

the joint probability distribution of trading decision 
behaviors and characteristic variables to determine the 
trading behavior in one day (positive average trading 
volume indicates purchase and negative value indicates 
sale). This paper assumes that the behavioral agent is 
the price-taker in the carbon market, so the trading 
decision only includes the bidding volume without the 
bidding price. The detailed model parameters of the 
behavioral agent can be found in appendix A.

Data Specifications

Carbon Market Parameters 

The emission reduction target for the second phase 
of the EU ETS is to reduce the total annual emissions 
by 6.5% compared to the total emissions Eb in 2005 by 
2012. Therefore, based on the actual carbon price curve 
of 2005, through the simulation the power generation 
production and the annual emissions of GenCos in 2005 
can be calculated as the historical emissions qi

h required 
for the initial allowance allocation in the second phase. 
According to the second phase emission reduction 
targets, the emission control factors λi

c for each year 
from 2008 to 2012 were set as 98.7%, 97.4%, 96.1%, 
and 93.5%, respectively. According to the actual market 
rules, the free allocation rate λi

a is 90%.

Participant Parameters

Based on the European power system data from the 
European Network of Transmission System Operators 
for Electricity (ENTSO-E), the relevant parameters 
for GenCos are set, including clean energy units, 
thermal power units and power loads. On the basis of 
data in ENTSO-E, the load curve and output of clean 

Fig. 3. Yearly load curve in different years.

Fig. 2. Decision process of carbon trading behavioral model.
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Fig. 5. Prices of fossil fuels in different years.

Table 2. Installed capacities of thermal power units in different 
years.

Table 3. Energy consumption rates and emission rates of thermal 
power units.

GenCo
Installed capacity (MW)

2005 2008 2009 2010 2011 2012

COAL_A1 57594 55900 49902 46135 44644 46345

COAL_A2 62547 56846 64187 57795 54235 53901

COAL_A3 34689 42811 41901 44463 53631 55788

GAS_B1 39493 41974 40209 42586 39493 42637

GAS_B2 42890 42683 51719 53349 47977 49589

GAS_B3 23787 32145 33762 41043 47443 51325

OIL_C1 10696 13250 12027 10647 10302 11123

OIL_C2 11616 13474 15469 13337 12516 12936

OIL_C3 6442 10147 10098 10261 12376 13389

GenCo Fuel consumption rate Emission rate
(g/kWh)

COAL_A1 415 (g/kWh) 1.225

COAL_A2 346 (g/kWh) 1.021

COAL_A3 335 (g/kWh) 0.987

GAS_B1 6462 (Btu/kWh) 0.383

GAS_B2 5955 (Btu/kWh) 0.353

GAS_B3 5687 (Btu/kWh) 0.337

OIL_C1 7006 (Btu/kWh) 0.572

OIL_C2 6094 (Btu/kWh) 0.497

OIL_C3 5976 (Btu/kWh) 0.488

Fig. 4. Output of clean energy units in different years.
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energy are constructed in Fig. 3 and Fig. 4. In terms 
of thermal power units, the ENTSO-E counts the total 
installed capacity of three types of thermal power 
units, including coal-fired units, gas-fired units and  
oil-fired units, and counts large-scale units of more 
than 400 MW, medium-scale units of between 200 MW 
and 400 MW, and small-scale units of less than 200 
MW. Based on this, each type of thermal power units 
is divided and the similar units are aggregated into  
a single unit. After the division, there are 9 types of 
thermal power units, and the corresponding installed 
capacity is shown in Table 2 and the corresponding 
energy consumption rate and emission rate are set 
according to the performance indicators of typical 
thermal power units in Table 3. The fossil fuel price 
curve comes from the World Bank website (as shown 
in Fig. 5).

Market Disturbance

The major disturbance in the actual operation of the 
EU ETS during the second phase came from the global 
financial crisis and the EU debt crisis. The impact of 
this disturbance on the European energy industry is 
reflected in a decline in energy demand and fluctuations 
in fossil fuel prices. In case study of this paper, the 
impact of macroeconomic disturbance on the carbon 
market is characterized by load fluctuations and fuel 
price fluctuations (as shown in Fig. 3 and Fig. 5).

Results and Discussion

Model’s Feasibility

Based on the carbon market dynamic assessment 
model, the above parameters are used to simulate 

the carbon price in the EU ETS. The simulation 
results show that the price dynamics obtained by the 
simulation are close to the actual dynamics of the price 
(Pearson correlation coefficient is 0.88), reflecting the 
impact of the two major disturbances of the “global 
financial crisis” and the “European debt crisis” on the 
carbon market price, and furthermore it can describe 
the mechanism that the influences of economic 
disturbances are transmitted to the carbon market 
price gradually through power load, carbon emissions, 
participants’ market position, trading behaviors, and 
the allowance supply and demand (as shown in Fig. 6).  
The carbon price curve obtained by the method in [15] is 
not obviously responsive to the two major disturbances, 
and its Pearson correlation coefficient is 0.77.

Comparing the simulation results of these two 
methods, the method we proposed before obviously 
shows advantages in simulating carbon market 
dynamics, especially the response to the two major 
disturbances. As it is limited by the availability of 
market information, and the modeling of market 
mechanism and trading behavior is still crude, it 
is still difficult to simulate the details of carbon 
market fluctuations on a smaller time scale. However,  
in terms of the overall carbon price trend, the carbon 
market dynamic assessment model could be used as  
a reliable simulation tool for the sensitivity analysis 
of key factors influencing carbon prices under the EU 
ETS.

Influences of Emission Reduction Targets 
on Carbon Prices

Scenario Settings

EU ETS in 2011 was taken as the research object. 
The emission reduction targets are set to reduce 

Fig. 6. Comparison between the simulation results and the actual carbon price curve.
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emission by 5%, 10%, 15%, 20%, 25%, 30%, 35%,  
and 40%, respectively, compared to the scenario without 
emission control.

Convergence of Average Carbon Values

It needs to be mentioned that as stochastic behavioral 
model is adopted in the case studies, simulation results 
under a given scenario are also stochastic. According 
to the “Law of Large Numbers”, the statistical result 
will converge to a stable value after a sufficient number 
of repetitive simulations. Taking the 5% emission 
reduction scenario as an example, after 50 times of 
repetitive simulations, the annual average carbon price 
converges to a relatively stable value (as shown in  
Fig. 7), which can represent the market status under this 
scenario, and we use “average carbon price” to denote 
this value.

Clearing Order of Power Units

Without considering the strategic quotation in this 
paper, GenCos use the marginal power generation 
cost as the quotation. Therefore, the marginal power 
generation cost determines the power units’ clearing 
order. If the marginal emission cost introduced by 
carbon prices is not considered, the coal-fired units 
with the higher emission rates have the priority to 
output because of the lowest marginal power generation 
cost. With the increase of carbon prices, gas units 
with lower emission rates have advantages in marginal 
power generation cost. When the carbon price reaches 
to a certain threshold, the gas units have the priority 
to output compared to the coal-fired units (as shown 
in Fig. 8). For easy to describe, the carbon price that 
changes the units’ clearing order is called the “threshold 
carbon price”. 

Fig. 7. Convergence of the carbon prices.

Fig. 8. Relation between marginal power generation cost and carbon prices.
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Simulation Results and Discussion

As the emission reduction target increases 
and the initial allocation of allowances decreases,  
the carbon price level will increase according to  
the demand-price model. The simulation results 
show that the average carbon price increases with  
the increase of emission reduction targets, but it is not 
proportionally increased (as shown in Fig. 9). When 
the emission reduction target is increased from 25% to 
35%, the carbon price curve values are already close 
to the threshold carbon price. Therefore, only a little 
more increase is needed to exceed the threshold carbon 
price, and the gas-fired units replace the coal-fired units 
to generate electricity so that the annual emissions 
are reduced to meet the emission reduction target. 
Therefore, the growth of the average carbon price  
in this period is slowing down.

The above results show under the same emission 
reduction ratio, the carbon price changes in different 
proportions, and in other words the efficiency of 
emission reduction is different. In particular, in some 
scenarios, carbon price incentives are not enough  

to change the order of GenCos, which is in line with  
the fact that carbon prices are relatively low compared 
with the social cost of carbon [30], so the market 
probably could only incur more costs rather than bring 
about corresponding emission reductions. 

Influences of Power Loads on Carbon Prices

Scenario Settings

The baseline scenario is set with 5% emission 
reduction target. On this basis, the power load increases 
by 5%, 10%, and 15%, and decreases by 5%, 10% and 
15% respectively, compared to the baseline scenario.

Simulation Results and Discussion

When the emission reduction target is 5%, if the 
load is lower than a certain level, the emission reduction  
is mainly caused by the reduction of the load level, 
rather than the increased output of the low-emission 
units. Therefore, when the load level is 85%~95% 
compared with the load level of the baseline scenario, 

Fig. 9. Influences of emission reduction targets on carbon prices.

Fig. 10. Influences of power loads on carbon prices.
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the average carbon price changes slowly. This result is 
consistent with the fact that the carbon prices of EU 
ETS remain low level despite the emission reduction 
target has been set [31], and the main reason is that 
energy consumption has dropped significantly due to 
the economic crisis. As the load level increases, the 
emission reduction is mainly caused by the increased 
output of the low-emission units. Therefore, when the 
load level is 105%~115%, the average carbon price 
changes rapidly (as shown in Fig. 10). Therefore, 
when facing with the influence of external factors, the 
regulators may need other measures to support the 
emission reduction target, such as a carbon price floor 
for ETS [32].

Joint Influences of Power Loads and Emission 
Reduction Targets on Carbon Prices

Scenario Settings

The emission reduction targets are set to reduce 
emission by 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 
40%, respectively, compared to the scenario without 
emission control. The power load increases by 5%, 
10%, and 15%, and decreases by 5%, 10% and 15% 
respectively compared to the baseline scenario. 

Simulation Results and Discussion

It can be seen from the above discussions that the 
total emissions are more susceptible to changes of load 
parameters. When the load level is reduced by 15%, the 
average carbon price is less impacted by the emission 
reduction target (as shown in Fig. 11), which explains 
the European Commission could do little to stabilize 

the carbon market when facing the disturbances of the 
global financial crisis and the European crisis, since 
the biggest share of emission reduction is due to the 
economic recession rather than to the EU ETS [33]. As 
the load level increases, the emission reduction target 
has more and more influence on the average carbon 
price.

Given the differences in the nature of these two 
parameters, the emission reduction target is the value 
set by the regulators, which will not change easily 
during the implementation period due to the legal 
basis [34]. The load level is a variable in the system,  
which is susceptible to the external environment such 
as primary energy, economic conditions, and climate 
change. For instance, the carbon emission reduction in 
EU ETS is mainly due to the reduction of production 
activities because of the global financial crisis. 
Therefore, it is necessary to consider the difference 
between the two parameters and the characteristics 
of the joint impact, in order to design a more efficient 
carbon market. 

Relation between Average Electricity Prices 
and Average Carbon Prices 

The power industry is the primary participator in 
the carbon market. The violent fluctuation of carbon 
prices not only affects the power generation cost of 
different primary energy sources and the operation of 
power systems on a short-time scale, but also affects 
the power supply structure on a long-time scale. In 
order to coordinate the efficient operation of the power 
system and emission reduction targets, it is necessary 
to analyze the transfer rate ηk

trans from carbon prices to 
electricity prices, which is shown in the equation (7).

Fig. 11. Joint influences of power loads and emission reduction targets on carbon prices.
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ua ua
trans k w
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p p
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                     (7)

Among them, pk
ua is the average electricity price 

under the emission reduction scenario k, pw
ua is the 

average electricity price without the emission regulation, 
and pk

ea is the average carbon price under the emission 
reduction scenario k.

When the carbon price is getting higher to reach  
the threshold carbon price, the low-emission units  
will be cleared preferentially. Therefore, the electricity 
price is determined by the unit with higher emission 
rate. However, as the carbon price increases, but 
does not reach the threshold carbon price, the 
corresponding electricity price will not change because 
of the unchanged clearing order of units, the transfer  
rate will decrease though (as shown in Fig. 12). 
Therefore, when studying the impact of the carbon 
market on the electricity market, it is necessary to 
complete the sensitivity analysis of relevant parameters 
instead of the single parameter analysis.

It is clear from the above results that not all  
carbon prices are transmitted to the electricity prices, 
which is consistent with some empirical studies [35]. 
It is possible to suppose that GenCos’ profits would 
be affected, due to the transition of allocation rules 
from grandfathering to auctioning for the electricity 
sector. With earnings from auctioning, regulators need 
to consider the transfer rate from carbon prices to 
electricity prices, to decide whether to support GenCos 
financially to ensure the stability of the power grid in 
the short term.

It should be noted that under the benchmark 
electricity price system in some countries, such as 

China, the determination of the on-grid price is not 
affected by the carbon price. The non-conductivity 
of carbon cost will have a greater impact on the total 
profit of GenCos. At present, China’s electricity price 
mechanism is mainly according to the government’s 
benchmarking price, which is mainly based on the 
economic life cycle of power generation projects, and 
the principle of reasonable compensation costs. Carbon 
cost is not used as a reference for benchmarking 
electricity prices. Once carbon cost is high enough, 
GenCos will fall into a loss situation. Since the 
marginal revenue is negative, the power generation 
will lead to greater losses, which will cause GenCos 
to lose their enthusiasm for power generation.  
Some GenCos may even reduce power generation 
through maintenance, resulting in power shortage. 
This result may be inconsistent with many studies 
and surveys that GenCos prefer a high carbon price  
[36], and the reason lies in different electricity price 
systems. Consequently, under the regulated electricity 
price regime, some governmental subsidies should 
be needed to support electricity production as a good 
starting point for the introduction of ETS [37].

Conclusions

This paper constructs a carbon market dynamic 
assessment model that considers the behavior of market 
participants, according to the rules and specific data 
of EU ETS. Furthermore, the feasibility of the model 
is verified by simulating the carbon price crisis of 
the second stage of EU ETS, providing an effective 
simulation tool to support regulators to design and 
improve the carbon market. 

Fig. 12. Transfer rate from carbon prices to electricity prices.
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Based on this model, the sensitivity analysis 
of key factors in EU ETS is conducted to enhance 
understanding on the dynamic operation of the carbon 
market. The most intriguing finding of this paper is that 
when the carbon price is close to the threshold carbon 
price, only a little more increase is needed to exceed the 
threshold carbon price that can change the power units’ 
clearing order. That means less cost could achieve the 
same emission reduction, which is of great importance 
for regulators to improve the market efficiency. Besides, 
the total emissions are more susceptible to changes of 
load parameters in contrast to the emission reduction 
target. That explains the European Commission could 
do little to stabilize the carbon market when facing 
the disturbances of the global financial crisis and the 
European crisis. 

This paper also provides an analysis on the relation 
between average electricity and average carbon prices. 
The threshold carbon price also has a great important 
influence on the transfer rate from carbon prices to 
electricity prices, further affecting the social welfare. It 
should be noted in some countries, such as China, the 
electricity market is under the benchmark electricity 
price system, which means the on-grid price is not 
affected by the carbon price. The non-conductivity of 
carbon cost may reduce GenCos’ power generation, 
resulting in power shortage.

As a preliminary exploration research, it is limited 
by the availability of market information, and the 
modeling of market mechanism and trading behavior 
is still crude, but the simulation results fully show 
that the carbon market dynamic assessment model 
can simulate the long-term trend of the carbon price 
and the sensitivity analysis provides some interesting 
insights for regulators to better understand the dynamic 
operation of the carbon market.
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Appendix A

Table A1. Trading  probabilities of behavioral agents when rt
f >5%.

Table A2. Trading probabilities of behavioral agents when –5%≤rt
f≤5%.

rt
p (%)

Trading probabilities corresponding to rt
u (%)

(-∞,-16] (-16,-14] (-14,-12] (-12,-10] (-10,-8] (-8,+∞)

(-∞,-20] 0.76 0.55 0.28 0.21 0.04 0

(-20, -10] 0.46 0.34 0.22 0.15 0.02 0

(-10, 0] 0.32 0.26 0.15 0.05 0.02 0

(0, 10] 0 0 0.01 0.04 0.09 0.12

(10, 20] 0 0 0.06 0.11 0.27 0.42

(20, +∞) 0.01 0.05 0.09 0.26 0.31 0.53

rt
p (%)

Trading probabilities corresponding to rt
u (%)

(-∞,-16] (-16,-14] (-14,-12] (-12,-10] (-10,-8] (-8,+∞)

(-∞,-20] 0.64 0.34 0.21 0.11 0.05 0.00 

(-20, -10] 0.33 0.25 0.15 0.12 0.02 0.00 

(-10, 0] 0.28 0.21 0.14 0.08 0.02 0.00 

(0, 10] 0.00 0.00 0.02 0.04 0.12 0.14 

(10, 20] 0.00 0.00 0.06 0.18 0.29 0.35 

(20, +∞) 0.01 0.05 0.07 0.30 0.40 0.60 
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Table A4. Average trading volume of behavioral agents when rt
f >5%.

Table A6. Average trading volume of behavioral agents when rt
f <–5%.

Table A5. Average trading volume of behavioral agents when –5%≤rt
f≤5%.

rt
p (%)

Ratio (×10-2) of average trading volume to initial allowance allocation corresponding to rt
u (%)

(-∞,-16] (-16,-14] (-14,-12] (-12,-10] (-10,-8] (-8,+∞)

(-∞,-20] 1.75 1.55 1.41 0.72 0.50 0 

(-20, -10] 1.47 1.30 0.96 0.38 0.29 0 

(-10, 0] 1.00 0.87 0.68 0.18 0.11 0 

(0, 10] 0 0 -0.06 -0.09 -0.22 -0.41 

(10, 20] 0 0 -0.06 -0.13 -0.36 -0.60 

(20, +∞) -0.07 -0.13 -0.27 -0.44 -0.79 -0.94 

rt
p (%)

Ratio (×10-2) of average trading volume to initial allowance allocation corresponding to rt
u (%)

(-∞,-16] (-16,-14] (-14,-12] (-12,-10] (-10,-8] (-8,+∞)

(-∞,-20] 1.65 1.28 1.09 0.61 0.34 0 

(-20, -10] 1.14 0.92 0.51 0.33 0.17 0 

(-10, 0] 0.83 0.55 0.39 0.14 0.08 0 

(0, 10] 0 0 -0.06 -0.13 -0.32 -0.51 

(10, 20] 0 0 -0.06 -0.17 -0.41 -0.71 

(20, +∞) -0.07 -0.14 -0.35 -0.59 -0.98 -1.14 

rt
p (%)

Ratio (×10-2) of average trading volume to initial allowance allocation corresponding to t
u (%)

(-∞,-16] (-16,-14] (-14,-12] (-12,-10] (-10,-8] (-8,+∞)

(-∞,-20] 1.49 1.02 0.68 0.45 0.30 0

(-20, -10] 0.93 0.76 0.42 0.22 0.13 0

(-10, 0] 0.68 0.45 0.32 0.13 0.07 0

(0, 10] 0 0 -0.06 -0.20 -0.37 -0.61 

(10, 20] 0 0 -0.09 -0.24 -0.49 -0.90 

(20, +∞) -0.13 -0.20 -0.44 -0.86 -1.13 -1.33 

Table A3. Trading probabilities of behavioral agents when rt
f<–5%.

rt
p (%)

Trading probabilities corresponding to rt
u (%)

(-∞,-16] (-16,-14] (-14,-12] (-12,-10] (-10,-8] (-8,+∞)

(-∞,-20] 0.49 0.28 0.13 0.08 0.01 0.00 

(-20, -10] 0.29 0.18 0.11 0.07 0.02 0.00 

(-10, 0] 0.22 0.18 0.14 0.08 0.02 0.00 

(0, 10] 0.00 0.00 0.03 0.04 0.18 0.22 

(10, 20] 0.00 0.00 0.13 0.29 0.34 0.47 

(20, +∞) 0.02 0.05 0.24 0.35 0.49 0.71 
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